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Abstract: The report concerns the dynamic analysis of
floating bodies for offshore wind energy purposes. In par-
ticular, a spatial formulation for the dynamics of rigid
bodies is developed in the framework of the recently de-
veloped geometric methods which exploit the structure of
Lie-groups to solve directly the equations of motion with-
out the necessity of introducing a parametrization to han-
dle the kinematic compatibility. The dynamic problem is
completely formulated with respect to an inertial (fixed)
frame, even for the rotational motion. Non-follower and
follower loads are therefore characterized, also in terms
of associated tangent operators, including the special case
of linear transformations of the state variables. The al-
gorithm, implemented according to the formulation devel-
oped, is then validated by comparison with available exact
analytic solutions in order to verify the capabilities of the
model.

1 Introduction

The reduction of greenhouse gas emissions is undoubt-
edly one of the most important challenges of the twenty-
first century. In order to reduce the emissions associated
with the traditional sources of energy, i.e. fossil fuels, the
exploitation of the so called renewable energy resources
gained over the years a primary role and focused the re-
search towards the development of proper as well as effi-
cient technologies. Wind energy is one of the most promis-
ing renewable resources. In the last fifteen years it had a
significant growth (see Figure 1) becoming the third en-
ergy resource in terms of produced power and the first
renewable energy resource.

In particular, offshore wind energy is becoming more
and more important because of the nature of available sites
and the better offshore wind conditions, in terms of higher
mean wind speed and less turbulent wind field. The ex-
ploitation of deep-water wind energy is always associated
with the use of floating platforms that had been evaluated
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fiir Stahlbau. Spatial formulation of
the dynamic problem and character-
ization of non-follower and follower
loads.

Characterization of linear transforma-
tions of the state variables (both non-
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use of Lie-group geometric methods
for the dynamics of moored floating
platforms”. Implementation of the al-
gorithm.

Visit to the laboratory of the Insti-
tut fir Stahlbau (Prof. Peter Schau-
mann). Implementation of the algo-
rithm and debugging.
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Ludwig-Franzius-Institut fiir Wasser-
bau, Astuar- und Kiisteningenieurwe-
sen (Prof. Arndt Hildebrandt). Veri-
fication and validation tests: compar-
ison of the numerical solution with the
exact analytic solution of a 1D forced
damped oscillator.
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with some available exact analytic so-
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proaches (both mixed and local for-
mulations). Analysis and discussion
of the results.

Analysis and discussion of the results.
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12 Dec 2016

13 Dec 2016

14 Dec 2016

15 Dec 2016
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Table 1: Chronology of the activity.

as the most economical support concept [12]. Such kind
of structures can undergo large displacements especially
during severe sea-states [11, 15]. The design and optimiza-
tion of offshore wind turbines is a very complex problem
of wind-wave-structure interaction which requires the use
of advanced numerical tools, as accurate as computation-
ally efficient. In this scenario, the dynamics of rigid bodies
(as a floating platform) is of great interest and is analysed
in this report in the framework of the recently developed
geometric methods [1, 4, 22] by using a complete spatial
formulation of the dynamic problem.

2 Dynamics of rigid bodies

The dynamic problem of a rigid body consists in estab-
lishing the evolution in time of the configuration of the
system given the initial and boundary conditions. In the
formulation of the dynamic problem, the set of dynamic
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Figure 1: EU power mix [9].

equilibrium equations should be associated with the kine-
matic equations that relate the velocity of the body with
the rotation operator and its time derivative [21]. Such
kinematic equations basically define the composition rule
for compound translations and rotations on the basis of
the velocity representation adopted*. Depending on the
orthonormal basis used for expressing the physical quanti-
ties, different equivalent formulations of the dynamic prob-
lem can be obtained.

2.1 Reference frames

The choice of the reference frames used for describing the
physical quantities associated with either the translational
motion of the center of mass or the rotational motion of
the body, can lead to different mathematical formulations
of the dynamic problem, formally equivalent, and then to

4The use of either a complete spatial formulation or a mixed
formulation or a complete local formulation, i.e. the use of different
Lie-groups, is always associated with a specific composition rule,
proper of the Lie-group used.

different integration formulas®. Let’s consider the follow-
ing two reference frames® (see Figure 2):

e inertial (spatial or fixed) reference frame I =
{O;z,y,z} defined by the orthonormal basis & =

{ef};

e non-inertial (body-attached) reference frame” B =
{G; 2",y , 7'} defined by the orthonormal basis M =
{eB}. This frame can translate and rotate with re-
spect to the fixed frame and an observer solidal with
the body-attached frame sees the rigid body fixed.
The associated basis changes its orientation accord-
ing to the motion of the rigid body.

Reference frames.

Figure 2:

2.2 Spatial formulation

In the spatial formulation all the physical quantities are
expressed with respect to the basis & which defines the
inertial reference frame. The set of equations which solves

5Even if the mathematical formulations are definitely equivalent,
the associated time integration algorithms are only approximately
equivalent, i.e. the accuracy for a given time step size depends,
among others, also on the formulation of the dynamic problem. How-
ever, for each formulation, if the time step size tends to zero, also
the error tends to zero.

6The notation ()(®):(°) indicates a physical quantity () observed
in the frame (¢) and expressed with respect to the basis (o), with
(¢) = I,B and (o) = S, M. Alternatively, if the indication of
the reference frame is not significant (for instance for forces and
torques), the superscript is limited to the information about the ba-
sis, i.e. (9)(9),

"The origin of the body-attached frame is located at the center of
mass of the body. This assumption simplifies the expressions of the
linear momentum and angular momentum since all the first moments
of volume are zero. However, it is possible to obtain formulations
similar to those developed in this work also for generic reference
frames.



the dynamic problem is given by%:?:

1,8
M
R=w"R

.S _ 18
mag” = F

RIPMRTGS + @ RIPMRTwS = T8
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where J is the tensor of inertia of the body and w is the
angular velocity. This formulation is usually associated
with the Lie-group R® x SO(3) and the right translation
map. Since the inertia tensor depends on the orientation of

81In this report it is used a matrix representation of the vector and
tensors operations, for further discussions the reader is addressed to
the reference [10] among others. In particular, let p and {e;} be
respectively a vector and a basis of the Euclidean space, the matrix
representation of the vector is given by:

p = pie; = [p1 p2 p3]”

Given the vectors p and w expressed with respect the same basis
{ei}, the basic operations in matrix notation are given by:

p-w=p'w
PW=pw’
P XW=DpwW

In the cross product p is the vector part of p, i.e. they are linked
together by a biunivocal relation, namely [10]:

~ 1 -
p = vect(p) = 5 €idkPkj
P = spin(p) = —€;jkPk

where €;;;, are the components of the Ricci’s tensor (third order ten-
sor) that can be easily determined remembering those three simple
rules [5, 10]:

1. €5 = 1 if ijk is an even permutation (cyclic);
2. €5, = —1 if ijk is an odd permutation;

3. €5, = 0 in all the other cases (that is when there is a repeated
index).

9The rotation is a linear transformation which preserve the dis-
tances and the reciprocal orientation between different points of the
same body. Rotations are described by a proper orthogonal ma-
trix that depends on three independent parameters. The choice of
the set of parameters is not unique and usually relates to the spe-
cific issue. Several kinds of parametrization were proposed over the
years, which can differ to each other in terms of independence, math-
ematical form, existence of singularities, computational efficiency,
composition low, geometric interpretation, etc. [10]. For instance,
nautical angles (or Tait-Bryan or Euler angles) as well as Euler an-
gles are widely used in maritme engineering because of their direct
interpretation, whereas quaternions, i.e. a paremeterization with a
redundant number of parameters, were introduced to improve the
computational effeciency and to prevent singularities (gimbal lock).
In the framework of geometric methods, rotations are paramterized
by the rotational vector that consists of a set of three independent
parameters with an easy geometric interpretation and without any
kinematic singularities [10]. The rotational vector is defined as the
vector with the same direction of the rotation axis and magnitude
equal to the rotation amplitude, namely:

% =u¢

The rotation operator can be expressed either in trigonometric form
or through the exponential map, and admits a series expansion [1,
5, 10, 13], namely:
sing~ 1—cos
¢ o+ . ¢
¢ ¢
~ 1~2 1-~3 1~
R=I+%+ -9 + % + - +—¢"
2! 3! n!

R=1+ P = exp(¥)

the body, the dynamic and kinematic problems are always
coupled to each other, even in absence of external loads
(free rigid body). Only in the very particular case of a
sphere (rigid body with a spherical ellipsoid of inertia),
if the external loads vanish, the dynamic and kinematic
problems are decoupled.

2.3 Mixed formulation

In the mixed formulation!® the motion of the center of
mass is described with respect to the basis S of the inertial
frame whereas the motion about the center of mass is de-
scribed with respect to the basis M of the body-attached
frame, which changes its orientation during the motion.
The set of equations which solves the dynamic problem is
given by [21]:

I
Yo —Xa
R=Rw

.S _ rs§
mag F

This formulation is usually associated with the Lie-group
R? x SO(3) and the left translation map. The resultant
and resultant torque of external forces can be functions
of the time and the kinematic quantities, therefore the
equations which describes the motion of the center of mass
and the motion about the center of mass can be coupled
to each other and with the kinematic problem. Only in
some particular cases, for instance when the external loads
vanish, it is possible to solve the two problems separately
and without having to know the actual configuration of the
body (independence of kinematic and dynamic problems).

2.4 Local formulation

In the local formulation all the physical quantities are ex-
pressed with respect to the basis M which defines the

where ¢ = y/%T1). The tangent operator and its series expansion,
associated with the rotational vector representation, are given by
[1, 5, 10]:

T(¢):I+COS¢—1$+(1isil’l¢>1/)'l/}

2 o ) o*

g tgr o D" g
Tw) =1 2!1p+3!¢+ +(n+1)!

Note that the apparent singularity in the previous equations for
¢ = 0, can be removed by noticing that both the expressions in
the neighbourhood of ¥ = 0 tend to the identity matrix. The in-
verse function of the rotation operator, called logarithmic map, re-

turns the rotational vector 9 associated with the rotational operator
R (%), namely:

~ 9
v= 2sin ¢

(R-RT) , ¥ = cos™

L [tr(Rz) - 1}

10Tf the origin of the body-attached frame is located in the center
of mass of the body (barycentric frame), this approach ensures the
simplest form of the dynamic problem. In fact the motion of the
center of mass is described by the second Newton’s law whereas
the motion about the center of mass is described by the Euler’s
equations.



body-attached frame. The set of equations which solves
the dynamic problem is given by [21]:

= RvéM
R = R
mvéM + ma™Mv éM = FM
JB Mw/\/l —I—wMJB’MwM — Té\/l

This formulation is usually associated with the Lie-group
SE(3). If the external loads vanish (free rigid body), the
dynamic equilibrium equations are independent from the
kinematic ones, i.e. they can be solved without having to
know the actual configuration of the body [21]. However,
in the most general case of forced motions, the dynamic
and kinematic problems are coupled to each other.

2.5 Linear operators

Let’s focus on the spatial formulation. Let q = [XG ;1]
be the state position vector'!, collecting the position vec-
tor of the center of mass and the rotational vector, let
v = [vé‘g, w?] be the state velocity vector, collecting the
velocity vector of the center of mass and the angular veloc-
ity vector, let v = [aIGS, 5] be the state acceleration vec-
tor, collecting the acceleration vector of the center of mass
and the angular acceleration vector. These three quan-
tities can be regarded as state variables and completely
describe the rigid-body motion. The dynamic equilibrium
equations can be written in terms of such state variables

and naturally define the residual vector r, namely:

A mIg, 03><3 B 03><1
re { 0313 RJBMRT }v+ [ Vi RIPMRT V46 N
[ F@avve ] _,
TE@ v vty |

(1)

The linearization of the Equation (1) with respect to the
state variables defines the tangent (stiffness, damping and
mass) operators, namely'?

K'- A4 = Dyt - Aq (2)
C'- AV = Dyi- AV (3)
M. Av = Dyit - AV (4)

HEven if the state variable associated with the configuration of
the body is expressed as a vector § € R%, do not confuse the nature
of the rotational vector ¥ which is a parametrization of the rotation
operator R € SO(3). The state position vector should therefore
be treated as an element § of the Lie-group R3 x SO(3), namely
G € R3 x SO(3).

12The directional derivative with respect to the position state vari-
able q = [xé’s; 9] requires somehow attention because of the nature
of the rotational vector ¥ which represents elements of the special
orthogonal group of finite rotations SO(3). In the framework of
the spatial formulation, compound rotations are defined by the right
translation map. Because of the structure of the algorithm [1], the
directional derivative of the rotation is computed with respect to the
increment @5 of the current rotation operator R(#) which is related
to the increment of the rotational vector through the tangent oper-
ator, namely 85 = [T()]7d%. By contrast, the position vector of
the center of mass does not introduce any significant issue.

2.6 Rotation derivatives

The rotation operator can be seen as a linear transfor-
mation and, in the dynamics of rigid bodies, it is usually
applied to vectors or to a composition of matrices and
vectors, i.e. to another vector. Hence, the derivative of
the resulting vector with respect to the rotational vector
(state variable) becomes of particular interest. Let z be a
vector!3:
~8 »

DRTz%) .0 =RTz5¢°

R'($)z° | ()

(6)

= —[RzM]§°

3 Algorithm

The spatial differential problem (see Section 2.2) that de-
scribes the dynamics of a rigid body in the Euclidean space
(six degrees of freedom) is solved with an efficient Lie-
group time integrator based on the geometric method de-
veloped in [1, 2, 3, 4]. The time integration scheme is an
extension of the generalized-a method for Lie-groups [4].
At each time step, the equations are solved for all the vari-
ables on the basis of their values at the previous time step,
by means of a Newton-Raphson scheme which involves the
linearization of the nonlinear problem around the current
configuration by means of the tangent operators. The al-
gorithm operates directly in the Lie-group R? x SO(3) and
rotations are parameterized by the rotational vector.

Given the state variables q, v and v at time t,, the
state variables at time t,4; can be computed with the
Algorithm 1. For further discussions on other possible
numerical approaches the reader is addressed to the refer-
ences [5, 7, 6, 13, 14, 18, 19, 20, 23].

3.1 Mappings

The algorithms proposed in [1] are a family of Lie-group
time integrators defined by the mappings used for updat-
ing the state variable q, i.e. Qnt1 = ©n(Qn, Vi, an, @nt1)-
The use of a complete spatial formulation and the con-
sequent introduction of the right translation map to de-
fine compound rotations [13], require a modification of
the original mappings. In particular, the new mappings
@}L*(qn,vn, a,) and cp,lw(\?n,amanﬂ), are given by:

Ant+1 = @111((]7“ Vi, &n, an+1) = eXp(&}m) © @}L*
o = hv, +h%(0.5 - B)a, +

6h2an+1 (9)

Note that in the previous equations the exponential map,
exp(e) € R? x SO(3), of the quantity () € RS is given by:

13These derivatives can easily be verified. Let 62 be an infinitesi-
mal rotation belonging to the tangent space at the identity, for any
finite rotation 9% and any vector z it follows that:

RT (¢ + 69) — RT (¢)]z ~ RT ()2T7 ()59
(R + 59) — R(®)]z ~ —[R(%)2]T” ()59



Algorithm 1: Scheme (single time step) for the solu-
tion of the spatial formulation of the dynamic problem.

inp]-It : h, Qf, Oy, 67 v tOl, Nmazx, M, Jv g, élnv ‘A’na
Vi, ap, F®O T® Al BE)
output: 441, Vi1, Vatl, angt

l—am

18 = meian
27 =g
3Vn+1:0;

QfVn—Qman |

for i + 1 to n,,4, do
An+1,1:3 = Xnt1 = di.3 + Y1:3;
10 Ant1,4:6 = Yny1 = logg [R(yae)R(ql6)];

~ (®) ~ (o)
11 (0) = (0) (qn+17tn+1) 9 (0) = FvTaAvB;

4 Ap41 = T—com 3

5 ‘A’n+1 = ‘A’n + h(l - V)an + ’Yhan+1;

6 q" :WZ*(élnv‘A/ruanah)ﬁ) , a=1,2,3;
7y =¢84, (Vn,an,an11,0,8) , a=1,23;
8

9

12 res = f‘(éln—&-la{’n—i-lvvn+17tn+1);
13 if ||res|| < tol then

14 ‘ break;

15 end

16 M’ = Mt(qn-&-la ‘A’n—&-h ‘?’n+17 tn+1);
17 C' = Ct(dn-l—la{’n-i-lv‘?’n-ﬁ-latn-&-l);
18 | K' =K' (Qni1, Vo1, Vot 1s tng1);
19 TI:SXl:S =Is;

20 Theae =15 — %ﬁ:@ + (1 - %) Lg“;
21 | S; =4 M!++'Ct+KI!TT;

22 Ay = —S; 'res;

23 | y=y+Ay;

24 Vi1 = Vag1 +9 Ay;

25 €’n+1 = ‘?’n+l + 5,AYQ

26 end

_ l—ay & .
27 ap+1 = an+1 + T—am V71,+17

(10)

eXp(:):[ (*)iz }

exXPso(3)(®4:6)

The composition rules of the quantities [x%; R?], [x*; R?] €
R? x SO(3) is given by:

(11)

x*; R o [x"; RY] = { X + x® }

R°R}
4 Inertial loads
According to the D’Alembert’s principle, an accelerating

body can be transformed into an equivalent static system
by means of the so called inertial loads'4, namely:

(12)
(13)

F2 = —mvy.3

TS = —J55Vy6 — Vae x TPV

14The inertial loads are equivalent external forces and torques as-
sociated with the accelerating masses.

where JBS = RIB-MRT. The tangent operators associ-
ated with the inertial loads are:

My 1.3 = ml; (14)
MZ:6x4:6 =RJPMRT (15)
Clowas = Vasd?F — (IB5%4) (16)
Kb o= — (JBSuue) + I55%,6+
1:6x4:6 ( 4:6) 146 (17)

= ~ = B,SZ
— Va6 (IB5Va6) + Va7 Va6

5 Non-follower loads

A load is said non-follower if its orientation does not de-
pend on the orientation of the body. The classic example
is the gravity force which is always directed downward re-
gardless the configuration of the body. The components
of a non-follower load, both force and torque, are natu-
rally referred to the basis S of the inertial (fixed) frame,
ie. F*/ T/ € {S}. In the spatial formulation, non-
follower loads are rather simple to handle because they
are already oriented according to the basis used in the
formulation of the dynamic problem. Only the torque as-
sociated with eccentric forces introduces some issues be-
cause the arm of the load is generally defined with respect
to the body-attached frame, i.e. the basis M.

5.1 Force

Let Fy be a non-follower force, applied in the location
(point) P of the rigid body, which can depend on time
but not on the state variables. Its contribution to the
loads acting on the system in the spatial formulation is
given by:

F=F=F} (18)
T =T =x0°F} = RxpMRTFY (19)

The tangent operator associated with the non-follower
force is given by:

—~

Kigxso = (RXZVRIFY) —Rx2VRIFY (20)

5.2 Torque

Let T?Df be a non-follower moment, applied in the location
(point) P of the rigid body, which can depend on time but
not on the state variables. Its contribution to the loads
acting on the system in the spatial formulation is given
by:

F =FS = 03,1
e
T=T =T}

The non-follower torque does not contribute to the tangent
operators of the system.



5.3 Linear transformations

An interesting case refers to loads which can be modelled
as linear transformations of the state variables q, v, Vv,
defined with respect to the basis S of the inertial frame,
i.e. non-follower transformations'®. The matrices associ-
ated with the linear transformations should be properly
converted on the basis of the spatial formulation adopted.

Let A be the square matrix of order six associated with
a non-follower linear transformation of the state variables
[(#)%; (¢)°], where (o) and (o) are respectively the vari-
ables related to the translational and rotational motions,

namely:
=[]

The non-follower transformation A associated Wit}} the
spatial formulation, indicated with the notation A, is

given by:
|-+
A=A

A=

(23)

(24)

B
TG

(25)

In this case, the transformation does not need to be con-
verted since it is already expressed with respect to the
basis of the inertial reference frame. As a consequence,
the tangent operators associated with the transformation
are simply given by the matrix A.

6 Follower loads

A load is said follower if it is dragged by the body dur-
ing the motion (it rotates with the body). The compo-
nents of a follower load, both force and torque, are nat-
urally referred to the basis M of the non-inertial frame,
ie. F/ T/ € {M}. Because of the spatial formulation,
the components of follower loads should be properly mod-
ified in order to be coherent with the basis used in the
formulation of the dynamic problem.

6.1 Force

Let F';, be a follower force, applied in the location (point)
P of the rigid body, which can depend on time but not on
the state variables. Its contribution to the loads acting on
the system in the spatial formulation is given by:

15For instance, in the case of floating bodies in the framework
of the linear theory, the hydrodynamic operators (added mass and
damping matrices) as well as the hydrostatic stiffness matrix, are
usually defined as non-follower linear transformations of the state
variables.

The tangent operator associated with the follower force is
given by:

K§:3><4:6 = (RFé) (28)
K3:6><4:6 = (RilB;)MF{D) (29)

6.2 Torque

Let T£ be a follower moment, applied in the location
(point) P of the rigid body, which can depend on time
but not on the state variables. Its contribution to the
loads acting on the system in the spatial formulation is
given by:

(30)
(31)

The tangent operator associated with the follower torque
is given by:

Kfl:6><4:6 = (RTé) (32)

6.3 Linear transformations

Similar to the case introduced in the previous section, an
interesting case refers to loads which can be modelled as
linear transformations of the state variables q, v, v, de-
fined with respect to the basis M of the body-attached
frame, i.e. follower transformations. The matrices asso-
ciated with the linear transformations should be properly
converted on the basis of the spatial formulation adopted.

Let B be the square matrix of order six associated
with a follower linear transformation of the state variables
[(@)M; (¢)M], where (o) and (o) are respectively the vari-
ables related to the translational and rotational motions,

namely: " Ny
| | =B | 0]

The follower transformation B associated with the spa-
tial formulation, indicated with the notation B, is given

(33)

by:
F2 } : [ (0)° ]
B (0)° oy
B _ |: RBI:SXI:SRT RB1:3><4:6RT :| (35)
RBugx1:3RT RBugxacRY

The tangent operators associated with the transformation
are given by the matrix B itself plus the tangent stiffness
related to the change of orientation of the body, namely:

K346 =— [Bl:?,/xiﬂﬂ‘s] +B; 3x1;3(j + (36)
- [B1:3><4:6(<>)5] +B, 3x4:6()

Kigxa6 = — []:3’4:6;1%')5] + By 6><1:3(E:)8+ (37)
— [Bubxas(0)5] + Bugxas(o)



7 Validation tests

In order to prove the effectiveness of the approach, the
numerical model, based on the Lie-group algorithm devel-
oped according to the spatial formulation, is tested on a
number of models for which an exact analytic solution ex-
ists. Unluckily, exact analytic solutions are available only
for few simple cases, as the one degree-of-freedom oscilla-
tors (free, damped and forced) or the rotating sphere in the
FEuclidean space. Of course, the most practical problems
are much more complex and require a numerical solution.

7.1 Sphere with follower torque

Let’s consider a rigid body with spherical ellipsoid of in-
ertia subjected to a constant follower torque'® in the very
particular case of absence of the gravity acceleration field,
i.e. absence of external net forces (weight). The features of
system and loads are reported in Table 2. Since there are
not external net forces applied on the body, the system
rotates about the center of mass (which does not trans-
late). This example allows us to validate the part of the
code which deals with finite rotations by means of a direct

comparison with the exact analytic solution developed in
[16]'7.

environment

gravity acceleration, g 0.00 m/s?
rigid body
inertia, J diag(3 3 3) kg-m?
reference point, xo™  [00 —0.6]7 m
loads
torque, Té [0 0 30]7 N-m
initial conditions

displacement, % |;—¢ 0007 rad
velocity, V]t=o [000101520]7 m/s|rad/s

Table 2: Sphere with follower torque: parameters used for
the analysis.

7.1.1 Error evaluation

The numerical and analytic solutions are compared in
terms of mean absolute error evaluated on the displace-
ment of the reference point xIB;’M at a set of specified
times t;, namely [1]:

Nstep
1

,S(num ,S(ref
ST gt ) = xp SO )| (38)
=1

xpS(t:) = R[p(t:)]xp ™ (t:) (39)

16The dynamic problem addressed in this section is the same stud-
ied in [1] and it is used as a benchmark.

L7This is one of the few cases (see also the next section) for which
an analytic solution is available for a three dimensional rotational
motion.

€error =

t; =042, ty = 0.60 s, ngep = 10

102
10°F 5
E
5 10" F €
=
()
10°F E
—©—p=10
-B-p=06
second-order ref. line
10°© I |
10" 10° 10 10"

time step size [s]
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Figure 3: Sphere with follower torque: comparison be-
tween the numerical solution and the exact analytic solu-
tion.

7.1.2 Results

The algorithm (see Figure 3), as expected, exhibits a
second-order convergence with respect to the time step
size. Coherently with the external torque and the initial
conditions, the reference point depicts a curved trajectory
about a variable axis. The numerical damping'® does not
significantly affect the accuracy of the numerical solution
even if the larger the damping the larger the error.

7.1.3 Remarks

The error exhibits a second-order accuracy similar to the
results reported in [1], where the same system is analysed
with the same initial and contour conditions but using
an algorithm based on the mixed formulation. Regardless
the numerical damping, it is possible to get a good level
of accuracy for a wide range of time step sizes.

18In the present work, the numerical damping, and then the al-
gorithmic parameters, is controlled by the parameter p according to
the formulation developed in [8].



7.2 Axially symmetric rigid body

Let’s consider an axially symmetric rigid body subjected
to a constant follower torque about the axis of symmetry
in the very particular case of absence of the gravity accel-
eration field, i.e. absence of external net forces (weight).
The features of system and loads are reported in Table 3.
Since there are not external net forces applied on the body,
the system rotates about the center of mass (which does
not translate). The exact analytic solution is developed in
[17].

environment
gravity acceleration, g 0.00 m/s?
rigid body
inertia, J diag(20 20 7) kg-m?
reference point, X?’M 00 —0.6]T m
loads
torque, T, (00307 N-m
initial conditions
displacement, 9|;—o [00 0] rad

velocity, V|t=o [0001.02.0 3.0]7 m/s|rad/s

Table 3: Axially symmetric rigid body: parameters used
for the analysis.

7.2.1 Results

The numerical and analytic solutions are compared in
terms of mean absolute error evaluated on the displace-
ment of the reference point xg’M at a set of specified
times ¢;, by using the Equation (38). The numerical er-
ror (see Figure 4(a)) exhibit a second-order convergence
with respect to the time step size. The numerical damping
slightly modifies the accuracy of the algorithm, in particu-
lar, the larger the damping the larger the error. Moreover,
if the system rotates faster (see Figure 4(b), initial velocity
doubled), the error is larger. Therefore, in the case of very
large velocities, only small time step sizes can guarantee
high levels of accuracy.

7.2.2 Remarks

The algorithm based on the spatial formulation can prop-
erly describe the motion of a rotating body with a satisfy-
ing level of accuracy which depends on both the numerical
damping and the initial conditions. In particular, if the
system rotates very fast, the error can increase even of
some orders of magnitude. In this condition, a good level
of accuracy can be achieved only with very small time step
sizes. However, the most systems for offshore wind energy
purposes usually have low rotational speeds. The simula-
tions of such systems can be performed using rather large
time step sizes (for instance 0.05 s). The numerical damp-
ing, usually associated with a loss of energy, can increase
the error but without significantly affecting the accuracy.
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Figure 4: Axially symmetric rigid body: comparison be-
tween the numerical solution and the exact analytic solu-
tion.

7.3 Forced damped harmonic oscillator

Let’s consider a rigid body with a linear spring and a lin-
ear damper connected to the center of mass and forced by
a non-follower sinusoidal force, without any other exter-
nal load (even the gravitational field is considered null),
in the case of natural initial conditions. The features of
system and loads are reported in Table 4. The particular
initial and boundary conditions make the system translate
along the z-axis without rotating, therefore the differential
problem can be reduced to the study of a one-dimensional
forced damped oscillator.

7.3.1 Analytic solution

In this case, the differential problem of a six d.o.f. rigid
body can be reduced to a simple forced damped harmonic
oscillator along the z-axis. The initial value problem is



environment
gravity acceleration, g 0.00 m/s?
rigid body
mass, m 1.0 kg
natural frequency, w, 0 rad/s
damping factor, v 0.3 -
loads
stiffness, A7, mw? N/m
damping, AY, 2vw,m N-s/m
force, FJi/, sin(2wpt) N
initial conditions
displacement, ¢ |:—o 0.0 m
velocity, 01 |¢=o 0.0 m/s

Table 4: Forced damped harmonic oscillator: parameters
used for the analysis.

given by!?:
mIag,1 + CflfﬂGJ + K{ll‘g,l = FE;S,1 = Fsin(wt) (40)
zaili=o =20 =0, Zg1li=0=1=20=0 (41)

The stiffness, the damping?® and the mass of the system
identify the natural angular frequency w,, and the damping

factor v, namely:
Kt
w, = 4] 211
m

(42)
_
= Dy (43)

The exact analytic solution of the differential problem is
given by:

rg1 = " sin(wt — )+

—vwnt . *

—e ™ |sin(—1) cos(wp V1 — v2t)+

sin(wp V1 — V2t)

LY cos(—) + vwy sin(—1)
weV1 =12

F
C KL= a?)? + 422

*

2va w
BT T

— (46)
Wn

19In order to not weigh the notation down, the indication of both
reference frame and basis is omitted, namely:

x = xS

20The stiffness and the damping of the system can be mod-
elled respectively as a linear transformation of the displacement,
ie. Kt, = A?l, and as a linear transformation of the velocity,
ie. Cfl = AY,. Since the body does not rotate, both non-follower
and follower transformations can be used in the model.

7.3.2 Results

The numerical and analytic solutions are compared in
terms of mean absolute error evaluated on the displace-
ment of the center of mass Xés at a set of specified times
t;, by using the Equation (38). The algorithm (see Figure
5(a)), as expected, has a second-order accuracy which is
slightly influenced by the numerical damping, even if the
error does not significantly change.

The trajectory of the center of mass (see Figure 5(b)),
predicted by the time integrator, matches the exact ana-
lytic solution without any appreciable difference and, after
an initial transient due to the initial conditions (homoge-
neous solution), the system is only driven by the forcing
load (particular solution).
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Figure 5: Forced damped harmonic oscillator: compari-
son between the numerical solution and the exact analytic
solution.

7.3.3 Remarks

The time integrator can properly describe the motion of a
translating body with a satisfying level of accuracy. The
numerical damping, sometime necessary, can increase the
error but without significantly compromising the accuracy.



7.4 Rigid body with follower loads

Let’s consider a rigid body in the Euclidean space forced
by a set of follower loads modelled as external sinusoidal
force and torque and linear transformations of the state
variables (displacement, velocity and acceleration vec-
tors). The features of system and loads are illustrated
in Table 5. An additional constant non-follower force is
considered to balance the weight of the body (due to the
gravitational field). In this section, the algorithm based on
the spatial formulation is compared with the algorithms

based on the mixed and local formulations?!.

environment

gravity acc., g 9.81 m/s?
rigid body
mass, m 1.0 kg
inertia, J m - diag(20 20 10) kg-m?
loads
stiffness, B4 10~3rand — sym(6, 6) °
damping, BY  10~*rand — sym(6, 6) .
inertia, BY 10~3rand — sym(6, 6) o
force, Ff 10~ sin(7/5 - t)[1 0 0] N
force, "/ mg[0 0 1]7 N
torque, T/ 10~ tsin(7/10-¢)[0 1 0]  Nm
initial conditions

displ., ql=o 00000 0T m|rad
velocity, V];—=o [000 00 0]7 m/s|rad/s

Table 5: Rigid body with follower loads: parameters used
for the analysis.

7.4.1 Results

The operators associated with the follower linear trans-
formations of the state variables were randomly generated
and converted into symmetric matrices simply by taking
the mean value of the extra-diagonal terms, namely:

L4 L4 1 ran ran . -
Bi(j) = B](i) = §(Bij d + Bj; d) for i#£j5 (47)

The operators used for the simulations are the following:

7.69
3.78 1.55 sym
826 2.59 5.4

q __ —4

BE=10""1 500 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.0 0.0 0.00 0.00

(48)

21These algorithms have been implemented and validated in the
aforementioned PhD research activity.

10

3.48
1.96 4.42 sym
v __qq—a | 635 6.96 4.42
BT =10 2.66 2.78 4.21 4.30
4.07 5.67 570 821 3.77
7.73 6.72 3.76 531 3.27 8.34
(49)
3.18
3.32 6.47 sym
v _1n—a | 979 325 1.10
BY =10 5.06 7.42 3.46 7.72
3.36 3.31 5,50 5.13 5.25
7.50 7.39 4.21 8.22 6.36 5.20
(50)

The different algorithms (see Figure 6) predict the same
trajectory of the center of mass as well as the same orien-
tation of the body. The curves of the components of the
rotational vectors have some discontinuities which occur
when the magnitude of the rotation reaches the value of 7
rad because the algorithm is set up to return a magnitude
in the interval [—m, w]. For this reason, for very large ro-
tations it could be necessary to keep track of the actual
rotation by adding (or subtracting) 27 rad to the mod-
ule of the rotational vector whenever such a discontinuity
occurs. However, note that the records of the velocities
(see Figure 7) and accelerations are not affected by the
discontinuities in the time history of the rotational vector.

7.4.2 Remarks

The algorithms based on the spatial, mixed and local for-
mulations can be considered equivalent in terms of pre-
dicted motion of the body. However, as far as the com-
putational effort is concerned, it should be properly inves-
tigated in order to better understand which formulation
could guarantee the lesser computational effort.
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lation.
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